30/5/12

Phương pháp đặt ẩn phụ trong phương trình vô tỷ ( phần 4)

                                     
III. Phương pháp dùng ẩn phụ đưa về hệ
1. Dùng ẩn phụ đưa về hệ đơn giản giải bằng phép thế hoặc rút gọn theo vế .
a. Dùng một ẩn phụ .
Ví dụ 25: Giải phương trình x2+x+5=5
Lời giải:
ĐK:  x5
Đặt t=x+5,t0. Khi đó: x=t25. Do đó ta có:

x2  +t=5  t2  x=5  x2  +t=5  x2  t2  +t+x=0  

x2  +t=5  (x+t)(x+1t)=0      x2  +t=5  x+t=0    x2  +t=5  x+1t=0      

Giải hệ và kiểm tra điều kiện, ta được:

x=±1212
Bài toán tổng quát: Giải phương trình


x2+x+a=a


b. Dùng 2 ẩn phụ .
Đối với phương trình dạng

a+f(x)m+bf(x)n=c


Ta đặt:  

u=a+f(x)m;v=bf(x)n


Như vậy ta có hệ:

u+v=c  um  +vn  =a+b  



Ví dụ 26: Giải phương trình

57x4+x+404=5,   (1)


Lời giải:
ĐK: 40x57
Đặt u=57x4;v=x+404
Khi đó:

(1)u+v=5  u4  +v4  =97  u+v=5  2(uv)210uv+528=0  

u+v=5  uv=6  uv=44    u+v=5  uv=6  


Ta thu được u=2;v=3hoặc u=3;v=2. Đến đây chỉ việc thay vào để tìm nghiệm của phương trình ban đầu .

Ví dụ 27: Giải phương trình

21x+x4=124


Lời giải:
ĐK:  0x21
Đặt: 21x=u;x4=v Với 0u21;0v214
Như vậy ta được hệ:

u+v=124u2+v4=21.u=124v(124v)2+v4=21



Giải (1):

(1)(v2+1)2(124+v)2=0  v2v+1124=0

v1,2=1±42432,  (v1,2>0)

Vậy v1,2 (thỏa mãn điều kiện) chính là 2 nghiệm của phương trình đã cho .

Ví dụ 28: Giải phương trình:

74x1+x2=(1x)2


Lời giải: 
Đặt: y=x,y0;z=1x. Ta có:

{y+z=1,   (1)uv=6  y+z=1  y4z4=74x  1,  (2)  


Thế (1) vào (2) ta có

y4(1y)4=74y14y(y34)2=0y=0y=34x=0x=916

2. Dùng ẩn phụ đưa về hệ đối xứng
Dạng 1: Phương trình dạng xn+b=aaxbn
Cách giải: Đặt t=axbn ta có hệ:

{xn+b=attn+b=ax


Ví dụ 29: Giải phương trình x3+1=22x13
Lời giải:
Đặt: t=2x13 ta có:

t3=2x1{x3+1=2tt3+1=2x{x3+1=2tx3t3=2(tx)



{x3+1=2t(xt)(x2+t2+t+tx+2)=0

{x=tx32x+1=0   (1){x3+1=2tx2+t2+tx+2=0,   (2)


(1)(x1)(x2+x1)=0x=1x=1±52



(2)  (t+x)2+x2+t2+4=0,  (3)


Phương trình (3) vô nghiệm.
Vậy nghiệm của phương trình là: x=1;x=1±52

Dạng 2: Phương trình dạng  x=a+a+x
Cách giải: Đặt t=a+x

PT  {x=a+tt=a+x



Ví dụ 30: Giải phương trình x=2007+2007+x
Lời giải:
ĐK: x>0
Đặt: t=2007+x,  (1)

PT  {x=2007+t,  (2)t=2007+x,  (3)


Trừ từng vế của (3) cho (2) ta được:

xt=tx  (tx)(t+x+1)=0  x=t



(1)  xx2007=0x=8030+280294  (x>0)



Dạng 3: Chọn ẩn phụ từ việc làm ngược:
Ví dụ 31:  Giải phương trình x22x=22x1
Lời giải: 
ĐK: x12. Đặt2x1=ay+b. Chọn a,b để hệ:

(I){x22x=2(ay+b)(ay+b)2=2x1,  (x12;y1  )


là hệ đối xứng.
Lấy a=1,b=1ta được hệ:

{x22x=2(y1)y22y=2(x1)  {x22x=2(y1)x2y2=0


Giải hệ trên ta được: x=y=2±2
Đối chiếu với điều kiện của hệ (I) ta được nghiệm duy nhất của phương trình là: x=2+2

Dạng 4 :
Nội dung phương pháp :
Cho phương trình : ax+bn=c(dx+e)n+αx+β
Với các hệ số thỏa mãn :

{d=ac+αe=bc+β

Cách giải: Đặt dy+e=ax+bn


Ví dụ 32: Giải phương trình:

4x+928=7x2+7

Lời giải:
ĐK : x94

PT4x+928=7(x+12)274


- Kiểm tra: a=17;b=928;c=7;d=1;e=12;α=0;β=74.
Đặt

y+12=4x+928



y2+y+14=4x+928  7y2+7y+74=x+94  x+12=7y2+7,   (1)


Mặt khác : y+12=7x2+7,   (2)
Từ (1)(2) ta có hệ :

x+12=7y2+7y+12=7x2+7


Đây là hệ đỗi xứng loại II đã biết cách giải .

Ví dụ 33 : Giải phương trình

x26x+3=x+3,x3.


Lời giải

PT(x3)26=x+3


- Kiểm tra : a=1;b=3;c=1;d=1;e=3;α=0;β=6.
Đặt :

y3=x+3y26y+9=x+3  x3=y26y+3,   (1)


Mặt khác : y3=x26x+3,   (2)
Từ (1)(2) ta có hệ :

{x3=y26y+3y3=x26x+3  


Các bạn tự giải hệ trên.

Ví dụ 34: Giải phương trình:

3x53=8x336x2+53x25


Lời giải :

PT  3x53=(2x)33.4x2.3+3.9.2x27x+2

3x53=(2x3)3x+2

- Kiểm tra :a=3;b=5;c=1;d=2;e=3;α=1;β=2.
Đặt :

2y3=3x53(2y3)3=3x5



8y336y2+54y27=3x5

8y336y2+53y25=3xy3,   (1)

Mặt khác : 8x336x2+53x25=2y3,   (2)
Từ (1)(2) ta có hệ :

{8x336x2+53x25=2y38y336y2+53y25=3xy3


Các bạn tự giải hệ trên.
Các bạn có thể download file PDF tại đây: download

8 nhận xét:

  1. thưa thầy em làm câu này -4x2+13x-5=sqrt(3x+1) làm theo dạng 3 tại sao k đc ạ?thầy giải thích chi tiết giúp e với ạ.cám ơn thầy!

    Trả lờiXóa
  2. Với bài này, đặt chuyển về hệ đối xứng loại 2 thì không tồn tại a,b. Em phải dùng phương pháp khác thôi em ạ.

    Trả lờiXóa
  3. thầy giải hộ em bai này voi a:

    2X+1+X√(X^2+2) +(x+1)√(x^2+2x+3) =0.mong thay som tra loi a.

    Trả lờiXóa
  4. thầy ơi! có thể quay nhiều video ve phan nay khong a.vi thi dai hoc cau nay thuong khó a, hihi

    Trả lờiXóa
  5. th ơi bài này có thể đưa về hệ đối xứng được k ạ? nếu k được thì làm thế nào được th? th giúp e nhé!
    x^3-9x^2+6x-6=3.căn3(6x^2+2)
    e cảm ơn thầy!

    Trả lờiXóa
  6. Thầy ơi thầy gửi link cho em được không ạ.

    Trả lờiXóa